

Exam 2

(50Q, rhythm strips, more cardiac, know ekg measurements/what each thing means, 10 thyroid, 5 DI and SIADH, 5 Adrenal, 1-3 math)

Endocrine

Most abundant
*T₄ needs iodine to turn into T₃ to be able to be used by the body

1. Thyroid (T₃&T₄) - synthesized from iodine

***know primary & secondary

a. Hyperthyroidism- GRAVES DISEASE (insufficient iodine, infections, genetics)

THYROIDISME - tremor, heart rate up, yawning, restless, oligomenorrhea, intolerance to heat, diarrhea, sweating, muscle wasting/weight loss, **exophthalmos** + goiter w/bruit

Thyrotoxicosis: excessive amounts of hormone, **life threatening** **HOB elevated**

Nursing care: artificial tears, salt restriction, elevate HOB, dark glasses, if unable to close eye @ night \rightarrow use tape to help shut (gently)

1. S&S: tachycardia, HF, shock, **hyperthermia/fever**, restlessness, seizures, abd pain, diarrhea, delirium,

2. Tx: reduce hormones, manage resp distress, reduce fever, replace fluids, eliminate stressor \uparrow protein 1-2 g/kg \uparrow carbs

* cardiac problems

Monitor:
Patent airway
after
thyroidectomy

- iii. Diagnostics: TSH, total T₃ & T₄

4,000-5,000

- iv. Treatment: **high-calories diet**, avoid seasoned & high fiber foods/caffeine, give PTU (blocks synthesis), iodine term), propranolol (tachycardia), RAI (radioactive iodine) (destroys thyroid tissue), partial thyroidectomy

1. Preop: meds to achieve normal levels, admin iodine, pt teaching

2. Postop: maintain airway - monitor for laryngeal stridor, IV Calcium (PTH released)

- a. **Hypocalcemia:** Trousseau's (bp cuff/arm flexion) and Chvostek's (facial nerve) signs

b. Hypothyroidism (iodine, atrophy, from hyper treatment, drugs, cretinism in infancy)

- i. S&S: fatigue, mental changes, bradycardia, constipation, **cold intolerance**, **weight gain**, myxedema, hair loss

ii. **Myxedema Coma:**

- iii. Diagnostics: primary (TSH inc to attempt to stimulate thyroid), secondary (TSH cannot be released)

- iv. Treatment: **synthroid** (in the AM w/out food) - forever! Do not switch brands

- v. Primary: thyroid issues, TSH high, T₄ low

- vi. Secondary: pit issues, TSH low, T₄ low

2. Anti-Diuretic Hormone

***know Na/urine SG

a. Diabetes Insipidus (low ADH) - not holding on to water

- i. Causes: Central (pituitary issue), Nephrogenic (kidney), Dispogenic (excessive fluid intake)

- ii. S&S: **polydipsia**, **polyuria**, dehydrated, fluid/electrolyte imbalances, dilute urine, concentrated blood, weak pulses,

hypernatremia, htn, inc Hct, dry skin

- iii. Diagnostics: serum levels and water deprivation test, **give desmo/vasopressin** (specific gravity increases if central)

- iv. Treatment: treat cause, replace fluids, replace ADH w/ **vasopressin**, low Na diet

b. Syndrome of Inappropriate ADH (high ADH) - holds on to too much water

- i. Causes: **small cell lung cancer**, head trauma, drugs

check k+
-don't give with
milk or antacids

Demeclocycline

Inhibits ADH, on renal tubules, increases in dilute urine

ii. S&S: dilutional hyponatremia, fluid retention, dilute blood, weight gain, concentrated urine, tachycardia, HTN, dec Hct, confusion/seizures

iii. Treatment: treat cause, restrict fluids, give hypertonic fluids - pulls water out, diuretics daily weights

Adrenal Cortex (Corticosteroids)

a. Cushing Syndrome - high levels Main cause

- Causes: excessive prednisone use, pituitary tumors, adrenal tumors, corticosteroids
- S&S: moon face, buffalo hump, thin hair, weight gain/truncal obesity, thin extremities, thin/fragile skin, Na/Water retention, hypokalemia. Hyperglycemia, gynecomastia, period issues Menstrual issues
- Diagnostics: 24-hr urine, plasma cortisol, dexamethasone suppression test, plasma cortisol, CT, MRI

- Critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH
- secondary to pituitary disease or

b. Addisons, Adrenocortical Insufficiency - low levels (adrenal cortex destroyed by antibodies)

- Causes: autoimmune, TB, adrenal infection, cancer of adrenals, bleeding adrenals
- S&S: adrenal crisis, hyperkalemia, hyponatremia, hypoglycemia, fluid volume deficit, shock, low weight, inc pigmentation, tachycardia, dehydration, fever, weakness, confusion, loss of libido, hypotension
- Treatment: Saline or D5NS, glucose, corticosteroids if cushings develops: gradually discontinue therapy, decrease dose, convert to alternate day regimen

1. Hydrocortisone: low doses okay, large can be toxic (adrenal suppression and cushings) hormone therapy

2. Fludrocortisone: salt/water retention

3. HRT increase

Solu-Cortef

(Methylprednisolone)

- corticosteroid

Cushions - during procedure

Addisons - \uparrow cortisol

Cardiac Dysrhythmias

1. Cardiac Output: SV x HR (normal is 4-6L/min)

- Both tachy and brady can lead to dec CO
- DEC CO = priority nursing dx
- S&S: hypoxia, dizziness, low BP, cool skin, thread pulse, SOB, dec UO

2. Conduction:

discharge state

recharge state

- Depol: more + on inside (contraction)
- Repol: more - on inside (relaxation)
- SA to AV to His Bundler to RLBB to PF = contraction
 - SA node (normal pacemaker) and atria \rightarrow 60-100 times/min
 - AV node and bundle of His \rightarrow 40-60 times/min
 - Bundle branches & Purkinje fibers \rightarrow 20-40 times/min
- Ectopic start: fails to start at SA node first
- 60-100 BPM
- How it works:
 - SA fires when depolarized = atrial contraction
 - AV receives from SA, short delay, impulse to bundle of his

Nursing dx:

- ineffective tissue perfusion r/t interrupted arterial flow
- decrease CO r/t altered electrical conduction
- activity intolerance r/t decrease CO
- anxiety/fear r/t threat of death, change in health status
- ineffective health maintenance r/t deficient knowledge regarding self care w/ disease

Preload: volume of blood in the ventricle chamber at the end of diastole

Afterload: resistance that the left ventricle must overcome to empty to circulate blood

Adrenal androgens

excess: acne, females develop male attributes & visa versa

Nursing care:

- Fluid imbalance
alt
- Risk for infection
alt delayed
wound healing

IV access!

Secondary:

- lack of ACTH

- secondary to pituitary disease or

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

Secondary:

- lack of ACTH

- secondary to pituitary disease or

wound healing

purple striae

wound healing

Menstrual issues

critical period of instability of corticosteroid imbalance 24-48 hrs

Post OP Adrenalectomy:

iii. Purkinje Fibers = ventricular contraction

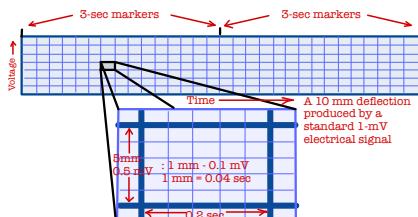
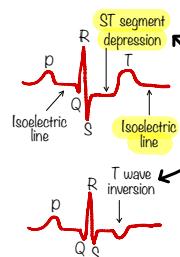
3. EKG

Normal

P wave - smooth and rounded

QRS Complex -

Q - first negative deflection



R - first positive deflection

S - negative deflection

following R wave

QT Interval - measured from beginning of Q wave to the end of the T wave. Represents the amount of time it takes the ventricles to depolarize and repolarize

ST Segment - between QRS & T wave -> isoelectric line (flat) in limb leads

Refractory period - (PVC), premature ventricular contraction (R on T) can put pt in ventricular fibrillation

a. The parts

- P Wave: depol of atria/contraction (peaked, notched, or inverted indicates COPD, CHF, valve disease)
- PR Interval (beginning of P wave to start of QRS): impulse conduction from SA to AV (0.12-0.20 sec) (3-5 little squares) (5 little squares = 0.2 sec)
 - Represents the time taken for the impulse to spread through the atria -> AV node -> and bundle of His -> the bundle branches & Purkinje fibers to a point immediately preceding ventricular contraction
 - Allows time for atria to empty contents into ventricles
- QRS: depol of ventricles/contraction, measured from beginning of Q to end of S (0.04-0.11 sec)
- T Wave: repol of ventricles (relaxation), inverted = infarction or ischemia (<3 not getting enough O2/blood d/t possible plaque on coronary artery)
 - Peaked T wave = hyperkalemia
 - ST segment depression d/t MI (patient may display I or both)
 - U Wave: may see normally, often = hypokalemia, positive deflection after T wave

b. How to Measure

- 1 small square = .04 sec
- 1 large square = .20 sec
- Lines at top are 3 seconds apart
- Calculating Heart Rate: count the R-R intervals in a 6 sec strip and multiply by 10

c. 12-lead: CP, SOB, MI, Telemetry

d. DEC CO:

- Evaluation: VS, ekg, labs (basic, Mg, Phos, CBC, Trop), CXR, Echo
- S&S: hypotension, pallor, cool skin, dizziness, chest pain, weakness, confusion, dyspnea, hypoxia

4. Sinus Dysrhythmias

- Sinus Rhythm(NSR): 60-100 bpm, regular, P wave for every QRS, PR = .12-.20 and QRS 0.04-0.10

Sinus = signal is starting at SA Node

- Can be asymptomatic
 - We treat brady & tachy symptoms (look at causes)

b. Sinus Bradycardia: <60 bpm (decreased CO), regular, P wave for every QRS

- i. Etiology: Athletes, vagal stim, MI, beta blockers, hypothermia, inc ICP
- ii. Management: assess for symptoms (atropine, pacemaker, inc fiber/water)

c. Sinus Tachycardia: >100-150, regular, P wave for every QRS

- i. Etiology: hypoxia, exercise, fever, hypotension, hypovolemia, anemia, MI, HF, anxiety, drugs (epi, atropine, amphetamines)
- ii. Management: assess for symptoms, IV fluids, correct cause (i.e. pain), beta blockers, Valsalva, Calcium channel blockers

5. Atrial Dysrhythmias Irregular

Atrial fibrillation/ dysrhythmias will cause differences in the P wave

Ventricular fibrillation will cause differences in the QRS interval

a. PAC (premature Atrial Contraction): <100 bpm, early P waves (conducted w/ QRS) or non conducted (no QRS), P wave for every QRS (bigeminy)

- i. Etiology: stress, fatigue, caffeine, alcohol, tobacco, CHF, electrolyte issues, COPD, hypoxia, heart disease, MI, dig toxicity
- ii. Management: assess for symptoms, withdraw stimulus, beta blockers - Metoprolol, lifestyle changes - looks like normal QRS on strip like an irregular sinus rhythm

b. Atrial Flutter: >200-350 bpm atrial, about 150 bpm ventricular, unidentifiable P waves, F waves (Saw tooth), QRS normal (loss of atrial "kick")

- i. Etiology: CAD, COPD, HTN, mitral valve issues, pulm. Embolism, ischemic heart disease, acute MI, hypoxia, dig toxicity, cor pulmonale, cardiomyopathy
- ii. Management: rate control w/ beta blockers & Ca channel blockers, antiarrhythmics, anticoags, Warfarin, cardioversion, ablation, Amiodarone

c. Atrial Fibrillation: 350-600 bpm, irregularly irregular, no P waves (d/t loss of effective atrial contraction), F waves, QRS normal (rapid ventricular response = >100)

- i. Etiology: CAD, rheumatic heart disease, HTN, cardiomyopathy, HF< pericarditis, hypoxia, acute MI, valve disease, thyrotoxicosis
- ii. S&S: asymptomatic if controlled, palpitations, fatigue, dec exercise tolerance, syncope, irregular pulse
- iii. Management: control rate w/ beta blockers, antiarrhythmic, anticoags, cardioversion, Ca channel blocker

above AV node
 Also known as PSVT
 Paroxysmal

d. Supraventricular Tachycardia (SVT): 150 to 220 bpm, regular, P waves hidden in T waves, Normal QRS - looks normal w/out P waves, abrupt onset & ending, sustained (SVT) w/ regular rhythm

- i. Etiology: overexertion, stress, CAD, hypoxia, fever, cor pulmonale, dig toxicity, rheumatic heart disease, caffeine, tobacco
- ii. Management: Valsalva, convert rhythm (adenosine, beta blockers, antiarrhythmic (amiodarone), cardioversion, ablation (look at where focus is) Sotalol

wide & distorted QRS complex > 0.12

6. Ventricular Dysrhythmias

ectopic focus in the ventricles

a. Premature Ventricular Contraction (PVC): One (isolated), Two (couplet), Three (V Tach), Every Other (bigeminy), Every Third (trigeminy), no P Wave, QRS >0.12, ST/T opposite directions of QRS

- i. Etiology: stimulants, electrolyte imbalances, fever, infection, stress, exercise, gastric overload, acute MI, acidosis, cyclic antidepressants, heart disease

H & Ts

hypoxia hypovolemia
hydrogen

ii. Management: monitor EKG closely, ID cause, drugs (beta blockers, **amiodarone**, lidocaine), PVC causes pause in pulse (use apical rate).

b. **Ventricular Tachycardia**: >100-250 bpm, regular, no P waves, **QRS >0.12**, sustained (30+ sec)/unsustained, **3+ PVCs - SHOCK!** or irregular T wave goes opposite direction of QRS

- i. Etiology: electrolyte imbalances, MI, cardiomyopathy, CAD, CNS disorders, drug toxicity, prolonged QT, frequent PVCs, infection
- ii. Management: ID rhythm, assess pt for pulse, monitor, apply pacing pads
 - I. If hemo stable: treat cause
 - a. Meds: **epi, vasopressin, amiodarone, lidocaine, beta blockers**
 - b. ICD implantation
 2. If unstable/no pulse: CODE blue, CPR/rapid defibrillation w/vasopressors & antidysrhythmics

Torsades

- if pt has no pulse
↳ CPR & rapid defib
↳ code blue
- awake w/ pulse
↳ may IVPB
- evaluate polypharm etiology
- atropine

c. **Ventricular Fibrillation (VF)**: no pulse, no rate/rhythm, **quivering ventricle = no CO** = Death. - SHOCK immediately

- i. Etiology: Acute MI, HF, hypoxia, hyperkalemia, drug toxicity, electrical shock, hypothermia, untreated VT, post cardiac cath
- ii. Management: CPR and rapid defibrillation - pt will die without

- unresponsive
- pulseless
- apnea

3. **DO NOT DEFIB!** i. Management: CPR, **epi/atropine**, transcutaneous pacing (**not-shockable**)

7. **Atrioventricular Blocks** Can give every 3-5 min increases HR

- a. **1st degree AV block**: prolonged conduction, **PR >0.2**, QRS normal Monitor for changes in heart rhythm
- b. **2nd degree Type 1 AVB (weckenback)**: PR interval prolongs with each beat until QRS drops
- c. **2nd degree Type 2 AVB (Mobitz II)**: severe, PR interval remains consistent and QRS is dropped w/out warning
- d. **3rd degree AVB (Complete)**: no communication between atria/ventricles
 - i. S&S: palpitations, dizziness, syncope, chest pain, fatigue, diaphoresis, mental status changes
 - ii. Management: place O2, obtain 12 lead ekg, monitor VS, assess for hemo stability, give atropine/place pacer pads on pt and keep crash cart by room

8. Drugs

- a. **Digoxin**: inc contractility, slow HR
- b. **Adenosine**: push hard/fast, temporary AV block restoration
- c. **Atropine**: inc HR, SA node firing
- d. **Epi**: inc HR, conduction, contractility, vasodilation
- e. **Vasopressin**: ADH, used in VF/VT
- f. **Electrolytes**: K (3.5-5.0)

Cardioversion vs Defibrillation

- Synchronized	- Unynchronized
- 70-75 (biphasic)	- 200-360 joules

9. Cardioversion *used in tachy

Nursing Interventions & pt teaching

- going to be sedated
- sign consent
- anticoags
- NPO
- IV access
- labs (Mg & K)
- remove med patches
- may need to hold digoxin

- a. **Synchronized:** shock delivered on R wave of QRS, used in hemo instability (VT pulse, SVT, A Fib, RVR, A Flutter)
 - i. Management: remove all nitro from patient, place defib pads on pt, turn on a synch, appropriate voltage, charge paddles, **ALL CLEAR**, shock, reassess
 - 1. Nonemergent: informed consent, anticoag hx, NPO, sedation
 - 2. IV access, crash cart, cardiac monitor, pulse ox, bp cuff, O2, anesthesiology at bedside

Pacemakers
used for brady

10. Defibrillation *used in VT/VF

- a. **Unsynchronized shock through the heart to depolarize cells and restart SA node**
 - i. **Monophasic or Biphasic**
delivers energy ↑
in one direction **FIRST!**
two directions
don't forget the gel for conduction
 - ii. Management: CPR, used defib, charge paddles, **ALL CLEAR**, shock and resume CPR
- b. **Implantable Cardioverter (ICD):** implanted for pts with symptomatic VT, threaded through to endocardium, battery powered, 1-3 lead, delivers 25 joules
 - i. For: sudden cardiac death survivor, spontaneous VT, life-threatening Dysrhythmia
 - ii. Management: cath lab, fear/anxiety, if device fires - have defib ready

II. Pacemakers → used for brady

****For ventricular pacing the blip should always immediately precede the ventricular depolarization wave**

Atrial pacing small blip immediately precede each P wave

Line on strip = pacemaker

- a. **Temporary:**
 - i. Transvenous: leads threaded through R atria to R ventricle
 - ii. Epicardial: leads attached to epicardium
 - iii. Transcutaneous: pacer pads placed on skin **EMERGENT!**
- b. **Permanent:**
 - i. SubQ or over pts pectoral muscle
 - ii. Leads threaded transvenously through R atrium into one or both ventricles
 - iii. Management: done in OR/Cath lab, local anesthesia, ekg monitoring
- c. **Terms:**
 - i. **Sensing:** generator can see pts intrinsic beat
 - ii. **Firing:** generator delivers pace
 - iii. **Inhibition:** pacer senses own heart beat and inhibits generator firing
 - iv. **Triggering:** pacer sense missed beat and generates response
 - v. **Capture:** heart responds to pace
 - vi. **Fixed pacing:** generator sets an impulse at a fixed rate
 - vii. **Demand pacing:** inhibits pace when pts rhythm is okay
- d. **Pacemaker Interrogation**
 - i. ID pacer rate/mode, look for trends/events, histograms, real-time & stored electrograms